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1.0 INTRODUCTION

1.1 History and Nature of Focused Fields

Focused antennas are of interest for microwave power

transmission (solar power satellite) and for applications re-

quiring high power density at moderate ranges. Probably the

earliest work on focused antennas was that of Wehner, reported

in a 1949 RAND report. Subsequently, Cheng (1955, 1957) cal-

culated defocus regions, while Bickmore (1957) calculated depth

of field and measured a far field pattern in the near field of

a focused antenna. This antenna was an 8 ft. long linear slot

array at 34 Ghz. The normal 2200 ft. half far field distance

was reduced to 65 ft. by bending the array into a circular

arc, with excellent results. In 1962 Sherman published several

calculated patterns of focused antennas. (See also ECI,

1962). Wheeler (1962) discussed the effects of focusing on

difference (monopulse) patterns. Partially coherent excita-
tion was treated by D'Auria and Solinrini (1967). Measurements
of focused linear arrays have also been made by Fahey et al

(1972). In a related work Fresnel zone plates for focusing

are evaluated by Van Buskirk and Hendrix (1961), and, as
expected, the gain is very low. Although focused antennas

are simple, the record is indeed meager.

A simplified picture of power flow from an aperture

antenna is sketched in Figure 1; the power is contained in a

corrugated tube whose mean diameter is that of the aperture.

The surface undulations increase in size and period as dis-
tance increases, finally spreading out to form the far field
beam. This tube extends to roughly twice the hyperfocal distance

R - L2/2X where L is the aperture width or diameter. To allow
accurate pattern measurements, the far field distance is usually

taken as 2L2/X. Beyond L2/A, the beam flares out into the 3 db
beamwidth of 03 = X/L. To focus the antenna, a rotationally

symmetric quadratic phase is added to the aperture excitation,
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allowing all parts of the aperture to contribute in phase at

the focal point at distance r0. This gives a far field type
pattern in the focal region, with near field type patterns at

closer distances, and In the far field. Because of this and

other complexities, the terms 'Fraunhofer' and 'Fresnel' re-
gions are deprecated. Rather the IEEE (1969) field definitions

of far field, radiating near-field and reactive near-field
are preferred. For antenna focused at infinity or at the

hyperfocal distance, the spot size is roughly L. When the
antenna is focused at a shorter distance, the spot size is
reduced as sketched in Figure 2. The spot width W is approx-
imately proportional to focal distance:

W r0
= or WL = r0 X

L L /X

Thus high power densities require small spots, which are pro-

duced by large antennas at short wavelengths. Power density

is, for any focused antenna (Hansen, 1959):

PD - PG
4 r0

where P is the radiated power and G is the antenna gain. Note

that G is the focused antenna gain at the observation point

which will not be the same as the unfocused gain. In terms of
aperture size, the far field power density is roughly:

PL2
PD =

rX

Figure 2 and the equations above imply a zero width spot at
zero distance, but the spot width actually levels off at a
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minimum value of roughly A/3 as shown by direct calculations,

by an uncertainty argument, and by microscope theory (Hansen,

1965).
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1.2 Near Field Calculations

The calculation of accurate fields close to an aper-

ture has always been and still is a difficult problem. This

problem is eased when long distances are involved so that phase

and amplitude approximations allow such techniques as Fast

Fourier Transform to be applied or when the observation angles

of interest are close to the axis and at the same time the
distance is not too short. All of these ameliorating circum-

stances approximate the two dimensional field (or diffraction)

integral by a simpler form. Narrow angle Fresnel theory is

from the 19th century; see Hansen (1964) for historical refer-

ences. More recent work in utilizing narrow angle Fresnel

approximations is by Woonton (1950), Lechtreck (1955), Bates

and Elliott (1956), and Melpar (1964). Calculations involving

directivity as well have been made by Yang (1955), Polk (1956),

Kay (1960), Jacobs (1962), Soejima (1962), and Lind (1966).

Other approximate methods include the inverse distance series

of Barrar and Wilcox (1958) and simplification of the integrand

by Shinn (1956). Measurements in the near field have been

made by Bickmore, as previously mentioned, and by Jull (1962)

and Scharfman and August (1970). Unfortunately, all of these

analytic~l techniques are simplistic and severely limited. As

a result, they have not received attention in recent years.

There is an extensive body of experience and literature in

the extrapolation of measurenents made in the near field close

to the surface of an antenna to the far field, the 'near field

pattern range'. This work will not be discussed here as it is

not relevant or useful but only interesting. Surveys of this

work are given by Johnson et al (1973) and Wacker (1982).

There are three techniques for reducing the labor of

* calculating accurate fields from large apertures, and these

techniques need to be evaluated for focused near field usage.

Two of these have coinections to the work in the 19th century.

The first ik the 7 .nike-Jacobi polynomial approach. In this

-5-
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technique, originated by Zernike (1934), a set of orthogonal

polynomials is established in the unit circle. These are

sometimes called circle polynomials and are members of the

Jacobi family. When used for the diffraction field of an

optical device, the result is a double series which converges

rapidly for small angles. The Zernike-Jacobi polynomials were

applied to electromagnetic problems by Cornbleet (1963) and

subsequently utilized by Galindo and Mittra (1977), Galindo

and Rahmat-Samii (1981), and by Rahmat-Samii et al (1981). The

last reference is a review of this technique and a discussion

of its application to near fields. A closely related approach

is that of Hu (1960, 1961) who obtained an improvement on the

small angle Fresnel formulation, with the resulting field

expressed as a sum of Lommel functions of two variables. See

also Hansen (1964). Lomnmel's work dates from 1884. When the

Lommel function of two variables is expanded in a series of

Bessel functions, a connection can be made with the Zernike

polynomials. The Zernike-Jacobi method is, however, basically

a small to moderate angle approach in that for large angles

the series diverge very slowly. Thus, it cannot be considered

here, because wide angle pattern behavior of high power micro-

wave antennas is important due to personnel hazards, gain loss,

equipment interference, etc.

The second technique with ancient roots is that of

field interpolation using a sampling function. Instead of

sampling the aperture distribution at a discrete number of

suitably closely-spaced points to compute the far field (this,

of course, is what an array does), the far field is calculated

by interpolating between a discrete number of far field sample

points. The number of far field sample points is comparable

to the number of aperture sample points so it might appear that

no saving would occur. However, the sampling technique is

advantageous when the far field points can readily and easily

be obtained, e.g. by FFT, and when the angular region over which

the field is needed is considerably smaller than the complete

-6-



range of angles. For linear or rectangular apertures in the

tar field, the interpolation function is typically the sinc

function, sin x/x. For circular apertures, it is 2J1 x/x,

again for the far field. Interpolation functions for near

field regions are discussed later. This technique was applied

to antennas by Ruze (1964), with applications for paraboloidal

reflectors in which the surface curvature must be taken into

accour.t made by Bucci and Franschetti (1980, 1981 a & b). In

applying this technique to calculations in the near field,

there are some important questions that must be answered, such

as how close must the samples be spaced and how difficult is

it to calculate the starting near field values. These questions

are answered in Appendix A with the results that the sampling

interpolation technique is not at all attractive for near field

calculations, and, in fact, is slower than direct numerical

integration.

The third method is somewhat more recent and was

developed by Hansen and Bailin in 1959. Here the Hertzian

dipole kernel is expressed as a triad of spherical Bessel

functions; these are then expanded by the Bessel function ad-

dition theorem which allows the original double integral to

be expressed as a sum of radial integrals which involve only

Bessel functions and the aperture distribution (but not the

observation angles) and angular integrals which involve only

associated Legendre functions and elevation angle (but not the

aperture size). The azimuth angle appears simply in the series

coefficients. This method is exact and gives accurate results

and is believed to be comparable in efficiency to the method

used in this report as long as more than several patterns are

to be calculated. However, the mathematics of the program

are complex, while the selected method has the virtue of

simplicity.

The method that is used in the remainder of the

report is direct double numerical integration. There are

three widely used, highly efficient methods for this task, and

-7-



each of these is evaluated quantitavely in Appendix B. The

methods are Romberg, which is an adaptive trapezoidal inte-

grator; Gaussian, wherein the coefficients are related to

improved convergence series ala Shanks, and replacement of the

aperture ty a discrete array with summation thereof. In all

cases, the number of points must be two per wavelength in each

aperture coordinate for accurate results near broadside and

four per aperture wavelength for accurate results near endfire.

Thus, a 15 wavelength source requires roughly either a seventh

order Romberg, a 32-step Gaussian, or 60 array points. From

Appendix B the conclusion is that the Gaussian has the best

combination of accuracy and speed. In this report two Gaussian

integrators are used, with steps of 32 and 128. The latter

allows wide angle results from apertures as large as 60 wave-

lengths in one dimension. Axial fields are calculated with

the smaller integrator as they dc; not experience the rapid phase

changes that large apertures have near endfire.

-8-
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1.3 Outline of theReport

Section 2 of the report is concerned with calculated

results of focal region fields. Axial power density, includ-

ing designs for low transverse sidelobes ard designs fcr low

forelobes and aftlobes, are included in Section 2.1. Trans-

verse fields are presented in Section 2.2. References are

contained in 2.3. Conclusions and system tradeoffs are given

in Section 3. Appendices cover an evaluation of the sampling

interpolation technique, an evaluation of numerical integra-

tion methods, and listing of computer codes.

" -9-

.....................,



2.0 CALCULATION OF FOCAL REGION FIELDS

An excellent picture of the behavior of focal region

fields can be obtained from various transverse pattern cuts

along with a plot of axial power density. The axial case is

treated first as it is somewhat easier, and this section is

followed by the transverse case. The aperture investigated is

square as this is expected to be representative of typical high

power microwave antennas. Such an antenna must be an array to

allow variable focus; and depending on the type of elements,

the array shape may be square, hexagonal, octogonal, circular,

etc. The focal field results will vary in a small way with the

array shape so that the results herein are expected to be

typical of all focal region fields. Since a tapered aperture

distribution may be used, the one-dimensional Taylor one-parameter

distribution is applied to the x and to the y axes of the array.

This is a low Q, robust, highly efficient distribution which

has a far-out sidelobe envelope decreasing as 1/u, where u -

(L/X) sin e cos 0. The pattern is a modified sin x/x through

the Taylor parameter B. This pattern is described in Appendix

A, and the corresponding aperture distribution is

g(x) = I 0 (TB V 1-x)

The sidelobe ratio (inverse of sidelobe level) is given by

SLR = 20 log sinh irB + 13.26 db

Table 1 gives the parameter B for various sidelobe ratios along

with normalized beamwidth, aperture efficiency, and excitation

edge taper. For additional information, consult Hansen (1983).

-1- ~ kZCD1O1P*2 5No 1U



Table 1.-Taylor one-parameter line source characteristics

SLR 8 U 3  TI 7U3 edge taper
dB rad dB

13.26 0 0.4429 1 0.443 0
15 0.3558 0.4615 0.993 0.457 2.5
20 0.7386 0.5119 0.933 0.478 9.2
25 1.0229 0.5580 0.863 0.48 1 15.3
30 1.2762 0.6002 0.801 0.481 21.1
35 1.5136 0.6391 0.75 1 0.480 26.8
40 1.7415 0.6752 0.709 0.479 32.4
45 1.9628 0.7091 0.674 0.478 37.9
50 2.1793 0.7411 0.645 0.478 43.3

Other distributions such as the Taylor ni are slightly more

efficient, but the Taylor one-parameter distribution is

representative of all cases likely to be of interest.



2.1 Axial Power Density

The discussion of power density along the axis in

the focal region is divided into two parts. The first part
is concerned with axial power density for uniform and Taylor

distributions; these give low sidelobes in the transverse

planes. The second section is concerned with low forelobes

and aftlobes along the axis, and follows a method developed

by Graham (1983).

2.1.1 Taylor Patterns

The square aperture of concern is shown in Figure 3

where the focal distance is r0 and the point along the axis
is specified by R0. The field on the axis is given by

1 1

F(0,0) M L f g(x)g(y) exp jk(R-r) dx dy

0 0
where R2 . R02 + L (x2 + y2

and r2 =r L2  (x2 +y 2

The exponential form is needed as x, y enter only as squares,

and thus cannot make a cosine form. The aperture distribution
in each coordinate is given by g(C). It is convenient to

normalize the focal distance in terms of the far field dis-
tance 2L2/A and also to normalize the distance along the axis

to the focal distance. These are

R0  r 0

0 ,2L IX

R
Note that normalized observation distance is: - ay
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z

y

L L

x

Figure 3

On-A-xis Geomietry



When these are inserted, the equation for R becomes

R L 42 Y 2 + +Y

Focused antennas for high power applications will most likely

be arrays, whether of resonant elements such as slots or dipoles
or of larger elements such as horns or dishes. Since all of

these have an element pattern, the most representative results
are obtained by including a suitable element pattern in the

calculations. This pattern is the ideal active element pat-

tern for a half-wave spaced array, and is a power pattern of
cos 0 in all planes. Since the integration involves 32 steps,

a 32-step approximation to the active element pattern is used

by virtue of incorporating the element patterr into the inte-
gration subroutine. The active element pattern is simply

given by

AEP = FR0/R

For uniform excitation the integral can be approximately writ-

ten in terms of Fresnel integrals; this approximation is good

for large y and D/X. However, for small apertures and for ta-

pered apertures, it is necessary to use other techniques for

evaluating the double integral. An extensive discussion of

this problem is given in Section 2.2, but here the method

recommended in that section will be used. This is double Gaus-

sian integration. Fcr large L/X, the phase term may be approx-

imated by separating it into x and y factors; each factor is

kept in the square root form:

1 1

F(O,O) 2L2{ g(x) exp jk(R -r) dx g(y) exp jk(R -r) dy

0 0

-15-



where RX= L [( 2ayL/X) + (x/2)2

To evaluate this approximation, calculations have been made

for L - 20A with this formula and with the exact result. A

further simplification has been evaluated, where each separated

phase square root expression is replaced by a simple quadratic

phase term. For uniform excitation this quadratic phase term

leads to the Fresnel integral form

F(0,0) = R [-) (arg) + S (arg)

arg = (l-8)/48y

Figures 4, 5, and 6 show the results for y = .025 and for

uniform excitation. Figure 4 is the result of the exact cal-

culation, Figure 5 is the result of using the separated quad-

ratic phase terms while Figure 6 is the Fresnel approximation.

It can be noted that the separated quadratic phase approxima-

tion yields results that are very close for the first forelobe,

main lobe, and back lobe with close in forelobes having lower

peaks and less deep nulls. Thus, the forelobe envelope in

the approximate form decays somewhat faster than the exact

result. The Fresnel approximation gives a main lobe broader

than actual with an aftlobe several db too low. The forelobes

are displaced in position and have an envelope that decays much

faster than the actual. For small values of 8 the results are
due to computer errors. Similar results were obtained for the

25 db Taylor case. In general, the separated phase calcula-

tion agrees more closely with exact calculation for larger y

and for larger L/X. Since practical high power microwave

apertures are likely to be much larger than 20A, the separated

phase results ate quite adequate and are used for more exten-

sive calculations.

-16-
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Figures 7, 8, 9, and 10 show the axial distribution

of uniformly excited square apertures for larger values of y.

It may be noticed that at distances approaching L 2/X the pat-

terns peak occurs significantly closer to the aperture due to

the /R2 effect. As y becomes smaller, the peak moves closer

to the focal point, at 6 = 1. Also, as y increases, the fore-

lobe level increases. This level is roughly -12 db at y = .05

and increases to -4 db at y = .5. Note that there are no

aftlobes at all. Figures 11 through 14 show the axial distri-

bution for a square aperture with a 25 db Taylor distribution

along each axis. Not surprisingly, the forelobe oscillations

are considerably reduced, but the forelobe envelope is increased.

For example, for y = .05 the forelobe is not quite -8 db and

for y = .2 it has increased to less than -3 db. Figures 15

through 18 show uniform and 25 db results for a 10OX square

aperture. The iOX results are very close to those of 20X,

except for low forelobes at small values of a. It appears that

the axial field distribution is essentially independent of L/X,

as long as L >> X. Thus these axial results are expected to

be representative of all large square apertures.

From the sequence of Figure 5, and 7 through 10, the

effect of the I/R2 can be observed. As mentioned above, for

small y the peak occurs close to B = 1, i.e. near the focal

point. As the focal point moves away from the aperture, the

peak moves away also but at a progressively slower rate so

that as the focal point approaches infinity, the peak merges

into the 1/R2 contour. The behavior can be understood quan-

titatively by utilizing the approximate Fresnel integr&l form

which, although inaccurate for forelobes and aftlobes, gives

good results for the lobe peak. When the aperture power den-

sity is normalized to unity at a distance of 2L2/X, the power

at the beam peak is as shown in Figure 19. Power is plotted

here against By as this is distance in terms of far field dis-

tance. It can be seen that for laige distance the focal spot

is merging into the I/R2 contour at a point which gives a

power density of roughly 11 db. This curve can be used in the

-20-
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tradeoff of aperture size, wavelength, focal distance, and

power density. For example, selection of ay = .02, which is

for a spot maximum at R = .04L 2/A, gives a power density

increase of 34 db (2500) over the unfocused value at 2L2/X,

from Figure 19. That unfocused value is:

PG PL Pn
PDR R X = 4L

where n is the array efficiency (wrt lossless uniform exci-

tation). The spot maximum power density is then Pil /4L2 times

2500. The focal distance is found from Figure 19 where a = .025.
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2.1.2 Low Forelobe and Aftlobe Axial Patterns

From the previous work, it was observed that a

tapered distribution which gave lower transverse pattern side-

lobes yielded higher for forelobes and aftlobes along the axis.

One might expect that an inverse aperture taper, i.e. one

higher at the edges than at the center, would reduce the axial

lobes. This type of distribution is not to be confused with

a monopulse distribution, where the two halves of the aperture

are out of phase. Graham (1983) has discovered a clever way

of exhibiting this property for line sources. Note that line

sources are intrinsically different as shown by Ficardi and

Hansen (1973). In a two-dimensional aperture the near field

phase smear degrades the pattern directivity in both planes,

thereby negating the /R2 field increase with decreasing dis-

tance. The result is that between the aperture and the focal

peak the power density for an unfocused planar aperture is

roughly constant, i.e. the oscillations are about a constant

level. For a line source, the pattern can be degraded in only

one plane and thus only 1/R effects are cancelled, leaving a

I/R envelope. Thus, the field oscillations for an unfocused

line source are about a I/R line as shown by Ricardi and Hansen.

And so the power density behavior for a focused line source can

be expected to be different also.

The quadratic phase approximation of the previous

section can be used for the line source with the result that

1

F = f g(x) exp jrr2 2 x 2 dx

0

where 2 I-
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2
By making a substitution of y for x , the formula becomes

1

iF gL- -exp jn 2y dy

0

This is now similar to the formula for pattern of a uniform

line source which is

1

F~~u) =in 7ruF(u) cos uy dy = i

0

Graham noticed the similarity between these results, although

the uniform line source pattern only matches the real part of

the axial field expression. However, an approximate corres-

pondence can be made between the angular variable u and the
2

axial variable c providing that the weighting factor which

is g( Vy)/ Vy can be made unity. The result is that an ampli-

tude excitation of x' gives approximately a sinc 2 axial

distribution except that the 1/R factor is not incorporated.

Even lower axial forelobes and aftlobes can be produced by

using a Ix$ g(x 2 ) distribution. For example, low axial lobes

can be produced by the Taylor distribution

g(x) = x I 0  (TTB 'Jl-x )

Note, however, that the parameter C is not convenient, and the

lobe behavior in terms of 3, or By, will exhibit lobes that

are squeezed together for small 6 and stretched out for large .

These ideas have been used to determine behavior of

the square aperture with inverse tapers, using the more

accurate separated quadratic phase expression. Figures 20

-36-
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through 22 show the axial power density for = .025, .05,

and .1 and it may be seen, as expected, tiat the forelobes

are higher than the aftlobes because of the I/R2 effect. The

forelobe level is considerably below the roughly -13 db ob-

tained by Graham for line sources, because the square sources

herE have elemental aperture areas in two dimensions that are

contributing to the out of phase interference that produces

the forelobes. For this reason, the forelobe level varies

more with y than for the line source case. In fact, it varies

from -22 db to -18 db for the three cases shown. A narrower

main lobe and higher fore and aftlobes can be obtained by put-

ting a pedestal on the inverse distribution, just as in con-

ventional transverse pattern synthesis. For example, a pedestal

of .5 added to x gives a forelobe level of -18 db for the

y = .025 case. Lower distributions are obtained by using

the inverse Taylor distribution, as shown in Figures 23, 24,

and 25. Note that in these figures and the previous triad,

the figure captions for simplicity show 'uniform axial' and

'25 db Taylor axial', although the patterns only roughly fit

these. Thus, the inverse distribution plus pedestal allows

any reasonable forelobe level to be reached between those of

the pure inverse and the uniform distributions. And the inverse

Taylor allows even lower distributions to be realized. For

a given aperture, an axial sidelobe level and envelope can be

optimally synthesized, although the results are not expected

to be significantly different from those here. There is an

appreciable gain loss in any inverse distribution, and this

is related to the increase in sidelobes in transverse patterns.

Both of these effects will be addressed in Section 2.2. Note

that for the inverse distribution the excitation is zero at

the center of the aperture and +1 at the aperture edges.
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2.2 Transverse Power Density

Based on the evaluation of interpolation and inte-

gration methods in the Appendices, and due to errors at wide

angles and short distances in the Zernike-Jacobi and Fresnel

approaches alluded to in the Introduction, the transverse

field calculations are made using Gaussian integration. Again,

two calculations have been made, with one utilizing the exact

phase square root term, while the other separates the phase

into x and y square root factors. The approximation in the

latter is evaluated by comparing results with the former for

L = 1OX. Figure 26 shows the geometry, with a square aper-

ture L by L used. The focal distance is r0 while the observa-

tion distance from the center is R0. Conventional spherical

coordinates are used. The field is given by:

1 1

F(uv) g(x)g(y) exp -jk(R-r) dx dy

-l -i

where g(x) is the Taylor linear one-parameter distribution

used in Section 2.1. Distances are:

R 2 = (R0u - Lx/2)2 + (R0u - Ly/2) 2 + R02 cos 2 0

r2 = r0
2 + (Lx/2)

2 + (Ly/2)2

and u = sin 0 cos 0, v = sin 0 sin 0. In all of these calcu-

lations, the ideal active element pattern (obliquity factor)

is utilized. Again, it is convenient to normalize focal dis-

tance in terms of far field distance, and observation distance

in terms of focal distance:
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R 0  Y = r 0

S 0 2L/X

Then the phase terms become:

2= L (2ayL/X)2 - 2y(ux+vy)L/X + (x2+y2)/4]

r = (2yL/ A)2 + (x2+y2)/4]

For the approximate form the double integral is separated:

1 11
F(u,v) f g(x) exp -jk(Rx-r x ) dxf g(y) exp -jk(R y-r ) dy

-I -I

where

R 2 = L2 [(2ByL/X)2 - 26yuxL/X + x2/4]

r 2 = L F(2yLA)2 + x2/4]

The 32-step Gaussian integrator is accurate for D/X up to 15,

while the 128-step Gaussian allows D/X up to 60. Figure 27

shows the far field pattern of a uniformly excited square

aperture 15 wavelengths each side. Figures 28 and 29 show

the pattern in the focal plane for a nornalized focal distance

of y = .025, with Figure 28 from the exact calculation and

Figure 29 from the separatEd phase approximation. Note that

even at this very close distance (focus less than one diameter

away) the exact transverse field sidelobe envelope drops off

rapidly whereas the separated phase approximation has a side-

lobe envelope decay very close to that of the far field pattern.
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However, for the main lobe and first several sidelobes, the

approximate and exact results are very close, with the side-

lobe level being about 2 db higher. Figures 30 (exact) and 31

(approx.) show the pattern of the same aperture in the focal plane

at a focal distance of y = .05. Now the near field sidelcbe inter-

ference process is least destructive with a resulting higher

sidelcbe envelope. The sidelobe level is now only about 1 db

below that of the far field. Figure 32 shows the pattern for

7 = .1, and it is approaching the far field pattern. For the

60 wavelength aperture there is much less difference between

the exact and approximate patterns, and these are very close

to the far field pattern. Figure 33 shows the focal plane pat-

tern for pattern = .025 (at a distance of 3 diameters).

Turning now to the aperture with 25 db Taylor dis-

tribution along x and along y, Figure 34 shows the far field

pattern while Figures 35 and 36 show the exact and approximate

patterns. It is interesting to note that the main beam and

first couple of sidelobes are very close between exact and

approximate reEults, and that the sidelobe level is roughly

6 db higher than the nominal -25 db. Again, the exact pattern

sidelobe envelope falls off rapidly due to the phase inter-

ference. At twice the distance, y = .05, the sidelobe level

degradation is only 3 db and the exact sidelobe envelope taper

is not as strong. For a y of .1, the sidelobe level degrada-

tion is less than 1 db and the envelope is closely that of the

far field pattern. For the 60 wavelength aperture the side-

lobe envelope is almost exactly that of the far field and the

sidelobe level is raised less than j db, for .025 (a dis-

tance of 3 widths). See Figure 37. For = .05 the pattern

is almost exactly the far field pattern.

In Section 2.1.2 inverse aperture distributions which

produced lower axial forelobes and aftlobes were investigated.

It was anticipated that the transverse sidelobes would be

adversely affected. Figures 38, 39, and 40 show the focal plane

-50-



oo

Cc

IJ
C)

LO

o EL
CD <tj

CD CD
z Cn

-=--

z

I

Lu

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _F--

a_

00 '13A3-1 N8311Vd

-51-



LOl

C>D

wLUJ

Dcl

LD

w Lii

Cl cIr

-52-

-~~ ... .. . .D.i



C>

Cfl

LU
cn

LUJ

H-

LUJ

LLU LUj
<r C-4

ul :D

bn

m H-
I-

:D

C0

LJ1

CUj LOt

*80 13A31 N831iVdI *j53-



0

)

Ln)c'J

r-.

0 LUJ
u-) L

03 LUJ

LLT <

LD

LU

-j D

c.D cz

LLJ

I'
'13A-1 N3liz

-54-



-0

LU

LI

E:
LU

LO L

DD

LLIQ

(-

~-4*

U-)

0 0i

z
Er
LU
9-

C)

6013A31 NUJIJ~d
-55-.



a)

a in

0

Lu

co
cc

I-
LU

SL
LO a

L! L

-u C

En

c:

-j

m

z
a:
LUJ

Hl-

'00 13A31 N83II~d L

-56-

Addb



11

cuj

IT_

ND LD

w
cm

Z :

CD U

zl >

-j
1 0

I I-

'E30 -13A I NH1lm

-57-



co C0

cui

II

::D

uJ

o On

C)
z

CC
0

u CD

LDi

-58-



LlU

0

LUi
:D 0

Li

Cc

LU C

-59-1

CF



rr

CD

UJ

co mU
ZD

Hl-

LUI
0 cc

Lii

cC

0

LU

C-

0 H-
LUJ

-0 LU

z
0 LLJ

- L

-600

0n 0 0 0 0-i



F,- 
-.

0

- 1m

C)

A

1

C)

- A

1
C)

4

-1

29. ~
-~ -~t

- -~- -. Th

- -.- C~)
~1 (2 ~

0<

~P *~-4

A

___ 
-Th-~

-1

_____ ________ 
~YD

& _ ______ 
-1

C) ZL

_____________ ________________________________________________________ 
-1

(I)

111111 I III. II II I I I I I I I

0 C a 0 0

~-1 

In

8Q '2]AT1 NH3IIVd

-61-



rq
patterns of the inverse taper aperture for = .025, .05,

and .1. It can be seen that the sidelobe level is high,

roughly -4 to -5 db. Further, the first sidelobe is a salient

in that it is considerably above the projected sidelobe enve-

lope. The second sidelobe, however, is above -10 db for
= .025 and only approaches -13 db for i = .1. These results

are not expected to change significantly for larger apertures.

In addition, there is a significant gain loss associated with

this distribution; for the 15 wavelergth aperture it is 12 db.

Because of the high transverse sidelobes and sizeable loss of

gain, the inverse distribution is not a serious candidate.

The preceeding pattern plots were all at a constant

radius in the principal plane through the focus. It is impor-

tant to know what the behavior of the transverse field is for

other distances. Calculations cf the transverse pattern at

the peak of the first forelobe and first aftlobe have been

made. Figure 41 shows the transverse cut through the first

forelobe of the 15 wavelength square aperture, where the peak

in this figure corresponds to the forelobe height which is

14.4 db below the axial peak value. Similarly, Figure 42 is

a transverse pattern through the aftlobe where the peak in

Figure 42 is 25.7 db below the axial peak. Similarly, Figures

43 and 44 are transverse patterns through the highest forelobe

and aftlobe of the uniform 60 wavelength aperture. Note the

rapid falloff for this larger aperture. The scales on these

two graphs are respectively 14.1 db and 24 db below the axial

peak. The apertures with Taylor distribution do not exhibit

aftlobes for y as small as .025; the transverse patterns

through the highest forelobe are presented in Figures 45 and

46 for 15 and 60 wavelength apertures. Again, note the rapid

falloff for the larger aperture. The peaks in these figures

are 11.4 db and 9.5 db respectively below the axial peaks.

Thus the transverse patterns outside the axial main beam regions

are well behaved, especially so for larger apertures.
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3.0 CONCLUSIONS

The following conclusions result from this study.

A. Axial power density distribution (the axial main

lobe, the first few forelobes and aftlobes) is essen-

tially independent of aperture size in wavelengths.

The forelobe envelope taper, however, decreases more

rapidly with shorter 6 for larger apertures.

B. The first forelobe level for uniform excitation

is a strong function of focal distance; for example,

it is roughly -14 db for y .025, roughly -12 db for

y = .05, roughly -9 db for - = .1, and roughly 6 db

for y = .2. The 25 db Taylor distributions produce

forelobe envelopes with roughly the same shape but at

a higher level and with much smaller oscillations.

For example, the level is roughly -11 db for y = .025,

-8 db for y = .05, and -5 db for y = .1.

C. Inverse aperture distributions (high at edge, low

in center) can reduce forelobe and aftlobe levels below

those of uniform excitation, but the efficiency is low

(of the order of -12 db) and the transverse sidelobe

level high (of the order of -3 db). This type of dis-

tribution is not attractive.

D. The forelobes and aftlobes of the uniform exci-

tation are probably satisfactory for most applications,

and this distribution has the further advantages that

the transverse sidelobes are not high and that the

efficiency is excellent.

E. The peak power density along the axis does not

occur at the focus because of the 1/R2 effect. For

very close focus (small y) the axial peak is close to

the focus, but as the focus moves away, the axial peak
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moves away much more slowly so that the separation

between the two increases. From a sy3tems stand-

point, the important parameter is power density veisus

distance with the latter normalized to 2L2 /A. The

peak power density available above the value at 2L /

is a function only of this normalized distance (by).

Increases of more than 30 db are available for short

focal distance and large apertures. These data (Figure

19) allow the systems designer tc trade off aperture

size, frequency, focal distance, and power density.

F. The transverse patterns, both through the axial

peak, and through the closest forelobe and aftlobe

peaks, are well behaved, with rapid falloff for all but

modest L/X. For short distance (small a) the first

several sidelobes increased, but again for large uni-

formly excited arertures this sidelobe degradation was

small. The 25 db Taylor distribution had less than a

db for apertures 60 wavelengths and larger.

G. The Gaussian integrators give an acceptable com-

bination of allowable aperture width and running time,

although all the calculations were slow. The exact

phase integral calculations give lower far out side-

lobes than the far field pattern or than the approxi-

mate separated phase calculation, for close focal

distances. This is due to sidelobe phase interference

at the short distances. For all calculations but those

of far out sidelobes, the separated phase calculation

is adequate, and much faster.
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APPENDIX A

FIELD CALCULATION BY SAMPLING INTERPOLATION

The field of an antenna, far or near, can be calcu-

lated by starting with field values at some number of discrete

points, obtained by FFT or other means, then by using sampling

functions to provide all field values in between. Basic theory

was developed by Whittaker (1915), Nyquist (1928), Shannon

(1949), and others. Extension to multiple dimensions was made

by Petersen and Middleton (1962). Application to optics was

by Barakat (1964) and to antennas by Ruze (1964) and Bucci and

Franschetti (1980, 1981 A & B). Typically, at least one data

point per pattern lobe is needed, and the interpolation is

performed by a series of interpolation functions; for a linear

aperture in the far field these functions are sinc type. In

the near field they are basically Fresnel Integral functions.

Circular apertures use a Jl(x)/x far field function, while the

near field function is basically a Lommel function of two

variables.

To evaluate the ability of this technique to produce

patterns, a Taylor one-parameter line source was used (Hansen,

1983). This allows various sidelobe levels to be evaluated.

In addition, expanded sampling is incorporated, where the

virtual aperture is increased by a small factor with this larger

aperture sampled. The field is given by:

L/xX

F(u) F 7c sinc (2au-n)n

n=-c L/ X

where the interpolation function is the sinc (2Lu-n)-, and the

F( ) are the Taylor pattern values. As usual, u = (L/ ) sin

while a = expanded aperture /L, and L is the aperture length.

The Taylor values are:
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sinc TT n2/41 -B , /2,x ; B

F (T ) =

sinhc B2 -n2/4 2  B > n/2a

Calculations were made on short (6 and 6.5X) line

sources, as these pose the most difficult test. For a uniform

line source, where the sidelobe peaks are uniformly spaced at

u = n, one sample per lobe (at the sidelobe peaks) gave an

excellent pattern. Of course, the Taylor one-parameter pat-

tern is available in simple closed form, and this was used

for comparison. Patterns with lower sidelobes were poorly

represented by one sample per lobe. Sidelobes would break up

into several lobes, and the sidelobe envelope was irregular.

To overcome this limitation, two samples per lobe were used,

and the 2 in the interpolation function argument indicates

this. Good results were obtained this way; Figures Al and

A2 show a 6 wavelength, 30 db Taylor source with Figure Al

that calculated using interpolation and Figure A2 the exact

pattern. There is only a slight discrepancy in the last side-

lobe. The fit may be improved through proper choice of a, but

this value depends on the source length and sidelobe level.

For example, using the 30 db Taylor case, i = 1.05 gives best

fit for L = 6X while ( = I is best for L = 6.5X. With a uni-

form line source, a = 1.1 gives best fit for L = 6X while

= 1.05 or 1.2 are best for L = 6.5A. Thus excellent patterns

can be produced using proper interpolation functions. See

Appendix C for codes.

Next the computational efficiency of the interpola-

tion calculation will be evaluated. Again, consider a linear

aperture of length L. The number of pattern sample points, at

two per spatial wavelength is 4L/X; since :iu = 27(L/2N) sin

the corresponding interval is L/4X. Thus the pattern must be
computed at 4L/A values of spatial frequency. These values
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are then the coefficients in the sampling sum; each new pat-

tern point to be computed requires a sum of 4L/x terms, using

these coefficients and the sampling (interpolation) function.

A symmetric pattern reduces the coefficient calculations to

half. But there are now two sampling functions in each series

term. There are then several steps: for each sampling point

calculate pattern (this may utilize FFT or may need numerical

integration or an equivalent array summation); then for each

observation point sum up coefficients times sampling functions.

In contrast, the Gaussian integration requires a number of

steps roughly equal to D/,. Each observation point then

requires a sum over integrand times constant values, with D/X

terms. Romberg utilizes a simpler sum but the number of terms

is roughly 4 times. And finally the replacement of the aper-

ture by an array of X/4 spacing requires a sum of 4D/X, about

the same as Romberg. The sampling-interpolation procedure is

then attractive only when, a) the coefficients (pattern samples)

are easily obtained, and b) the range of pattern values needed

is much less than the total range.
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APPENDIX B

EVALUATION OF NUMERICAL INTEGRATION METHODS

The interpolation algorithm requires that the field

be known at each of a numer of grid points. When the far

field is of interest, these points can sometimes be calculated

via FFT. However, in the near field it is necessary to use

other techniques. As mentioned elsehwere in this report,

results at wide angles almost always require numerical inte-

gration over the aperture, or something equivalent. The pur-

pose of this section is to compare and evaluate for large

Epertures three efficient and widely-used methods. These are

the Romberg with fixed order, the Gaussian with 32 steps, and

aperture summation using quarter-wave spacing.

Romberg integration is adaptive trapezoidal in nature,

where the parameters calculated for each layer of subdivision

are saved for use in the next layer. It is thus highly effi-

cient. In the adaptive form the subdivision continues until

the projected error is less than a specified value. A simpler

version used here is not adaptive in that the order is speci-

fied in advance. The running time closely doubles for each

unit increase in order. This subroutine is faster than the

adaptive version and, with experience, the proper order can

be picked in advance. For large order, however, many values

must be calculated and stored, which makes Romberg inefficient.

Gaussian quadrature is one of the oldest methods and

evaluates the integral at a set cf unevenly spaced points with

weight functions calculated from orthogonal polynomials. See

Davis and Rabinowitz (1967). This procedure is a special case

of the non-linear transformations developed by Shanks (1955).

Tables for values up to 512 steps are by Stroud and Secrest

(1966).
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Another method is to replace the integral by a sum

where at least two samples per wavelength are used. It will

appear later that for satisfactory accuracy at angles near

endfire it is necessary to use four samples per wavelength.

The resulting sum may incur accumulated roundoff errors for

very large linear apertures or for moderately large planar

apertures. As the number of terms in the sum becomes large,

it may be necessary to utilize double precision.

The comparison test was performed on a Taylor one-

parameter line source of varying length. The integral expres-

sion and its discrete counterpart are

1

F(u) = I 1(TBVl-x2 ) cos iux dx

0

N-1

F(u)= A0 + 2 An cos 2nu , N odd

n=l

where the An are the Taylor amplitude coefficients. The form

shown is for quarter-wave spacing in the sum although half-wave

spacing was also used. This particular pattern is convenient

as it is easily calculated in closed form, see Hansen (1983),

so that the numerical results can be compared with the exact

space factor. Calculations were made for u = 25 and 50, where

u = (L/A) sin 0. For u = 25, the Romberg results showed high

sidelobes in the vicinity of u = 16 for order 5, and an oscil-

lation of 2 db of sidelobe envelope in the same region for

order 6. Order 7 gave excellent results with a relative time

of 180. The Gaussian with 32 steps gave excellent results for

u = 25 with a relative time of 52 but produced high and heavily

distorted sidelobes for the u = 50 case at roughly u = 30, with
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a relative time of 98. See Figure BI. Similarly, the Romberg

for the larger range requires a much higher order and a doubling

of its time for each increase of one. However, the Romberg

order is simple, and the order is easily increased while dou-

bling the Gaussian numer of steps requires a new program with

new coefficients. Thus, although it is faster than the Romberg,

it is more difficult to prepare. The array calculations using

half-wave spacing gave excellent results out to roughly u = 10

with the relative time of 41. With quarter-wave spacing the

results were excellent over the entire range with a relative

time of 73 for u = 25. This time, of course, should increase

directly with the aperture length.

Thus, for small apertures the 32-step Gauss is the

most efficient and is satisfactory until the aliasing due to

sampling appears. A 128-step Gauss allows aperture widths up

to 60X to be calculated.

-
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APPENDIX C

COMPUTER CODES

*CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCXCc
C C
C FOCSQAX USE TAYBCALC, ROOTW, TAYWFUN, BESI, C
*C FOCSQGQ32C,FOCSQFCR,FOCSQGQ32D,FOCSQFCT FSQ.MC C

C C
C CALC ON-AXIS FIELD OF SQUARE FOCUSED APERTURE C
C TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y C
C USES EXACT PHASE INTEGRAL WITH GAUSSIAN INTEGRATION ALONG X & Y C
C IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION C
C C
C FOCAL DISTANCE NORM4ALIZED TO RO=2*L*L/WV C
C GAMA=RO*WV/2*L*L C
C RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA=R/RO C
C J.WILLIS, P-753, JULY 1983 C
C C
C PREPARED BY R.C.HANSEN C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DIMENSION E(501)
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX ED,EE
REAL LWV,KL
COMMON PB,KL,BGL2 ,GL2

COMMON /TAY/ PI,SLR

PR=1 80/PI
WRITE (12.900)

900 FORMAT(1X,-PROGRAM FOCSQAX-,/)
100 ACCEPT -L/WV,SLR 11,LWV,SLRD

IF (LWV.EQ.O) GO TO 990
KL=2*PI*LWV

C CALC TAYLOR PARAMETERS
CALL TAYB(SLRD,B)
PB=PI *B
CALL BESI(PB,0,EO,IF)
TYPE "EO=",EO

C INPUT FOCAL REGION PARAMETERS
ACCEPT "BETAM, GAMA, NPOINTS "BETAMGAMA,NPT
DO 160 I=2,NPT
BETA=(I-i.) *BETAM/ (NPT-1.)
BGL=2.DO*BETA*GAMA*LWV
BGL2=BGL*BGL
GL2=(2.DO*GAMA*LWV) **2

C CALC FIELD AT POINT USING GAUSSIAN INTEGRATION
CALL G032C(0.,1.,ED)
EE= ED/BETA
E(I)=20*ALOG10(CABS(EE)/(E0*EO)+1E-6)
TYPE I, BETA, E(I)

160 CONTINUE
E(1)=-40



EN=E(1)
DO 170 I=2,NPT

170 IF (E(I).GT.EN) EN=E(I)
DO 180 1=1,NPT

180 E(I)=E(I)-EN
TYPE "EN=",EN
OPEN 1,-PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

950 FORMAT (E12.6)
GO TO 100

980 STOP "FILE OPEN ERROR"
990 WRITE (12,995)
995 FORMAT (1X,-<FF>')

END



C FOCSQFCR; USE FOR FOCSQAX
C OUTER GAUSSIAN INTEGRAND

* COMPLEX FUNCTION FCR(X)
DOUBLE PRECISION BGL2,GL2
COMPLEX GG

* REAL KL,
COMMON PB,KL, BGL2,GL2
COMMON /FUN/ XX
xx =x
CALL GQ32D(O.,1.,GG)
CALL BESI(PB*SQRT(1-X*X) ,O,BI,IF)
FCR=BI *GG
RETURN
END

C FOCSQFCT; USE FOR FOCSQAX
C INNER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCT(Y)
DOUBLE PRECISION FBGL2,GL2
COMPLEX EXP
REAL KL
COMMON PB,KL,BGL2,GL2
COMMON /FUN/ X
F=.25D0* CX*X+Y*Y)
EXP=CEXP (CMPLX (0.,SNGL (KL* (DSQRT (BGL2+ F) -DSQRT (GL2+F) ))))
CALL BESI(PB*SQRT(1-Y*Y) ,O,BI,IF)
AEP=1../(l.+SNGL(F/BGL2) )**.25
FCT=BI *EXP*AEP
RETURN
END

RLDR FOCSQAX TAYBCALC ROOTW BESI TAYWFUN FOCSQGQ32C^
FOCSQFCR FOCSQGQ32D FOCSQFCT @FLIB@

FOCSQAX



C FOCSQGQ32C; USE FOR FOCSQAX
SUBROUTINE GQ32C (XL,XU ,Y)

C 32 POINT GAUSSIAN QUADRATURE INTEGRATION ROUTINE
COMPLEX FCR,Y
A=.5*(XU+XL)
B=XU-XL
C= .49863193*B
Y=.35093O50E-2*(FCR(A+C)+FCR(A-C))
C=.49280575*B
Y=Y+.81371974E-2* (FCR(A+C)+FCR (A-C))
C=.48238112*B
Y=Y+. 126 9603 2E-1* (FCR (A+C) +FCR (A-C))
C= .46745303*B
Y=Y+.17136931E-1*(FCR(A+C)+FCR(A-C))
C=.44 8160 57*
Y=Y+.21417949E-1*(FCR(A+C)+FCR(A-C))
C=.42 46 83 80
Y=Y+.25499029E-1* (FCR (A+C)+FCR (A-C))
C=.39724189*B
Y=Y+.29342046E-1* (FCR(A+C)+FCR(A-C))
C=.36609105*B
Y=Y+.32911111E-1* (FCR (A+C)+FCR (A-C))
C=.33152213*B
Y=Y+.36172897E-1*(FCR(A+C)+FCR(A-C))
C=.29385787*B
Y=Y+.39096947E-1*(FCR(A+C)+FCR(A-C))
C=.25344995*B
Y=Y+.41655962E-1* (FCR(A+C)+FCR(A-C))
C= .21067563*B
Y=Y+ .43 826 046 E-1*(FCR (A+C) +FCR (A-C))
C=.16593430*B
Y=Y+.45586939E-1*(FCR(A+C)+FCR(A-C))
C= .11964368*B
Y=Y+.46922199E-1*(FCR(A+C)+FCR(A-C))
C= .072235980*B
Y=Y+ .47 81936 0E-1* (FCR (A+C) +FCR (A-C))
C=.024153832*B
Y=B*(Y+.48270044E-1*(FCR(A+C)'+FCR(A-C)))
RETURN
END



C FOCSQGQ32D; USE FOR FOCSQAX
SUBROUTINE GQ32D(XL,XU,Y)

C 32 POINT GAUSSIAN QUADRATURE INTEGRATION ROUTINE
COMPLEX FCT,Y
A=.5*(XU+XL)
B=XU-XL
C= .49863193*B
Y=.35093O50E-2*(FCT(A+C)+FCT(A-~C))
C=.49280575*B
Y=Y+.81371974E-2* (FCT(A+C) +FCT (A-C))
C=.48238112*B
Y=Y+ .126 9603 2E-1* (FCT (A+C) +FCT (A-C))
C=.467 453 03*
Y=Y+ .17 136 93 1E-1* (FCT (A+C )+FCT (A-C))
C= .44816057*B
Y=Y+.21417949E-1*(FCT(A+C)+FCT(A-C))
C=.42 46 83 80

Y=Y+.25499029E-1*(FCT(A+C)+FCT(A-C))
C=.39724189*B
Y=Y+.29342046E-1*(FCT(A+C)+FCT(A-C))
C= .36609105*B
Y=Y+.32911111E-1*(FCT(A+C)+FCT(A-C))
C= .33152213*B
Y=Y+. 36 172897 E-1* (FCT'tA+C) +FCT (A-C) )
C=.29385787*B
Y=Y+.39096947E-1*(FCT(A+C)+FCT(A-C))
C= .25344995*B
Y=Y+. 416 55 96 2E-1*(FCT (A+C) +FCT (A-C) )
C=.21067563*B
Y=Y+.43826046E-1*(FCT(A+C)+FCT(A-C))
C=.16 593 43 0*
Y=Y+.45586939E-1*(FCT(A+C)+FCT(A-C))
C=.11964368*B
Y=Y+.46922199E-1*(FCT(A+C)+FCT(A-C))
C= .072235980*B
Y=Y+.47819360E-1*(FCT(A+C)+FCT(A-C))
C= .0 24153 83 2*B
Y=B*(Y+.48270044E-1*(FCT(A+C)+FCT(A-C)))
RETURN
END



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C FOCANTPAT; USE TAYBCALC,ROOTWTAYWFUN,BESI, C
C FOCANTFCR,FOCANTFCT,FOCGQ32C,FOCGQ32D FOC.MC C
C C
C CALC NEAR FIELD PATTERNS OF SQUARE FOCUSED APERTURE C
C TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y C
C USES EXACT PHASE INTEGRAL WITH GAUSSIAN INTEGRATION ALONG X & Y C
C IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION C
C C
C FOCAL DISTANCE NORMALIZED TO R0=2*L*L/WV C
C GAMA=RO*WV/2*L*L C
C RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA=R/RO C
C J.WILLIS, P-753, JULY 1983 C
C C
C PREPARED BY R.C.HANSEN C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

DIMENSION E(501)
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX ED,EE
REAL LWV,KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /TAY/ PI,SLR
PI=3.1415926536
PR=180/PI
WRITE (12,900)

900 FORMATU(X, "PROGRAM FOCANTPAT" ,I)
100 ACCEPT -L/WV,SLR "1,LWV,SLRD

IF (LWV.EQ.0) GO TO 990
IF (LWV.GT.20.) STOP "L/WV MUST BE <= 20"
KL=2 *PI *LWV

C CALC TAYLOR PARAMETERS
CALL TAYB(SLRD,B)
PB=PI*B
CALL BESI(PB,O,EO,IF)
TYPE "EO=",EO

C INPUT FOCAL REGION PARAMETERS
ACCEPT "BETA, GAMA ",BETA,GAMA
BGL=2 .DO*BETA*GAMA*LWV
BGL2=BGL*BGL
GL2= (2 .DO*GAMA*LWV) **2
WRITE (12,910) BETA,GAMA

910 FORMAT (lX,-BETA=",F7.2," GAMMA=",F7.2,/)
C INPUT PATTERN DATA
150 ACCEPT "PHI, NPOINTS "PH,NPT

SP=SIN (PH/PR)
CP=COS (PH/PR)
DO 160 I=1,NPT

ST=SIN (TH/PR)
CT=COS (TH/PR)
U=ST*CP



V=ST*SP
C CALC PATTERN AT POINT USING GAUSSIAN INTEGRATION

CALL GQ32C(-1.,1.,ED)
E(I)=20*ALOG10( .25*CABS(ED)/(E0*E0)+1E-6)
TYPE I,TH,E(I)

160 CONTINUE
EN=E(l)
DO 170 I=2,NPT

170 IF (E(I).GT.EN) EN=E(I)
DO 180 I=1,NPT

180 E(I)=E(I)-EN
TYPE "EN=",EN
OPEN 1,-PLOTFILE", ERR=980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

950 FORMAT (E12.6)
GO TO 100

980 STOP "FILE OPEN ERROR"
990 WRITE (12,995)
995 FORMAT (1X,-<FF>")

END

RLDR FOCANTPAT TAYBCALC ROOTW TAYWFUN BESI FOCANTFCR-
FOCANTFCT FOCGQ3 2C FOCGQ3 2D @FLIB@

FOCANTPAT



C FOCANTFCR; USE FOR FOCANTPAT
C OUTER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCR(X)
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX GG
REAL KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /FUN/ XX
XX =X
CALL GQ32C(-L.,1.,GG)
CALL BESICPB*SQRT(1-X*X),O,BI,IF)
FCR=BI *GG
RETURN
END

C FOCANTFCT; USE FOR FOCANTPAT
C INNER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCT(Y)
DOUBLE PRECISION BGL,BGL2,GL2,F1,F2,RD
COMPLEX EXP
REAL KL
COMMON PB,KL,BGL,BGL2,GL2,U,V
COMMON /FUN/ X
Fl=DBLE (X*U+Y*V)
F2=.25D0* (X*X+Y*Y)
RD=DSQRT (BGL2-BGL*F1+F2)
EXP=CEXP(CMPLX(O. ,SNGL(KL* (RD-DSQRT(GL2+F2) ))))
CALL BESI(PB*SQRT(1-Y*Y),O,BI,IF)
AEP=SQRT(SNGL(BGL*SQRT(.-U*U-~V*V)/RD))
FCT=BI *EXP*AEP
RETURN
END
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C

C FOCANTPATI; USE TAYBCALC,ROOTW,TAYWFUN,BESI,FOCANTlFCR, C
C FOCANT1FCT,GAUSS32C,GAJSS128DC PC1.MC C
C C
C CALC NEAR FIELD PATTERNS OF SQUARE FOCUSED APERTURE C
C TAYLOR ONE-PARAMETER DISTRIBUTIONS USED IN X AND Y C
C PHASE INTEGRAL SPLIT INTO X & Y FACTORS; GAUSSIAN INTEGRATION C
C IDEAL ACTIVE ELEMENT PATTERN USED IN INTEGRATION C
C C
C FOCAL DISTANCE NORMALIZED TO RO=2*L*L/WV C
C GAMA=RO*WV/2*L*L C
C RATIO OF DISTANCE TO FOCAL DISTANCE IS BETA-R/RO C
C J.WILLIS, P-753, JULY 1983 C
C C
C PREPARED BY R.C.HANSEN C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION E(1001)
DOUBLE PRECISION COMPLEX EUUrEVV
DOUBLE PRECISION BGL,BGL2,GL2
COMPLEX EE,EU,EV
REAL LWV,KL
COMMON PB,KL,BGL,BGL2,GL2,W
COMMON /TAY/ PI,SLR
PI=3.1415926536
PR=1 80/P I

* WRITE (12,900)
* 900 FORMAT(lX,"PROGRAM FOCANTPAT1",/)
100 ACCEPT "L/WV,SLR N,LWV,SLRD

IF (LWV.EQ.0) GO TO 990
KL=2*PI *LW

C CALC TAYLOR PARAMETERS
CALL TAYB(SLRD,B)
PBPI *B
CALL BESI(PB,rEO,IF)
TYPE "E0=u,EO

C INPUT FOCAL REGION PARAMETERS
ACCEPT -BETA, GAMA "BETA,GAMA
BGL=2 .DO*BETA*GANA*LWV
BGL2-BGL*BGL
GL2-(2.DO*GAMA*LWV) **2
WRITE (12.910) BETA,GAMA

910 FORMAT (lX,wBETAm",F7.2," GAMMA=",F7.2,/)
C INPUT PATTERN DATA
150 ACCEPT "PHI, NPOINTS ",PH,NPT

SP-SIN (PH/PR)
CP=COS (PH/PR)
DO 160 Iinl,NPT

ST-SIN(TH/PR)
CT=COS(TH/PR)
U-ST*CP



V-ST*SP
C CALC PATTERN AT POINT USING GAUSSIAN INTEGRATION

w=U
IF (LWV.GT.15.) GO TO 320
CALL GQ32C(-1.,1.,EU)
W-V
CALL GQ32C(-1.tl.,EV)
EE-EU *EVP

GO TO 125
120 CALL GQ128(-1.DO,1.DO,EUU)

Winy
CALL GQ128(-l.DO,1.DO,EVV)
EE-DCXCX (EUU*EVV)

125 E(I)=20*ALOGIO(.25*CABS(EE)/(E0*EO)+1E-6)
TYPE ITHE(I)

160 CONTINUE
EN=E (1)
DO 170 I-2,NPT

170 IF (E(I).GT.EN) EN=E(I)
DO 180 1I-1,NPT

180 E(I)=E(I)-EN
TYPE OEN=,EN
OPEN 1,wPLOTFILE*, ERR-980
WRITE (1,950) (E(L),L=1,NPT)
CLOSE 1

950 FORMAT (E12.6)
GO TO 100

980 STOP "FILE OPEN ERRORN
990 WRITE (12,995)
995 FORMAT (lX,m<FF>*)

END



C FOCANT1FCR; USE FOR FOCANTPATI
*C GAUSSIAN INTEGRAND

DOUBLE PRECISION COMPLEX FUNCTION FCR(X)
DOUBLE PRECISION COMPLEX EXP

* DOUBLE PRECISION BGL,BGL2,GL2,F
REAL KL
COMMON PBPKL,BGL,BGL2tGL2tW
Fin.25D0*X*X
EXP-DCEXP CDCMPLX (0.DO ,KL* (DSQRT (BGL2-BGL*W*X+P) -DSQRT (GL24P) )))
CALL BESI(PB*SQRT(1-X*X) ,O,BI,IF)
AEP-l./(1.+SNGL(F/BGL2) )**.25
FCR-BI *EXP*AEP
RETURN
END

C POCANTFCT; USE FOR FOCANTPAT
C INNER GAUSSIAN INTEGRAND

COMPLEX FUNCTION FCT(Y)
DOUBLE PRECISION BGL,BGL2,GL2,F1.F2RD
COMPLEX EXP

* REAL KL
COMMON PB,KL,BGL,BGL2,GL2,UtV
COMMON /FUN/ X i
F2m.25D0* (X*X+Y*Y)
RD-DSQRT (BGL2-BGL*Pl+P2)
EXP=CEXP(CMPLX(O. ,SNGL(KL*(RD-DSQRT(GL2+F2)))))
CALL BESI (PB*SQRT(1-Y*Y) ,O,BI,IF)
AEP-SQRT (SNGL (BGL*SQRT (1. U*U-V*V) /PD))
FCT-BI *EXP*AEP
RETURN
END

RLDR POCANTPAT1 TAYBCALC ROOTW BESI TAYWFUN"
F'OCANTlFCR FOCANT1FCT GAUSS32C GAUSS120DC OFLIB@

' FOCANTPAT1



C GAUSS128DC; GAUSSIAN QUADRATURE 128 STEPS, DOUBLE PRECISION COMPLEX
SUBROUTINE GQ128(XL,XU,Y)
DOUBLE PRECISION COMPLEX FCRrY
DOUBLE PRECISION XL,XU,A,B,C
Aa.5D0* (XU+XL)
B-XU-XL
C-.*499912443 97 356D0'B
Y-.224690480146045D-3*(FCR(A.C)+FCR(A-C))
C- .49953872998868D0'B
Y-Y+.52290633967017D-3*(FCR(A.C)+FCR(A-C))
C- .49886662431275D0*B
Y-Y+.82125150933451D-3*(FCR(A+C)+FCR(A-C))
C- .49789637926749D0*B
YuY+.11191442154813D-2*(FCR(A+C)+FCR(A-C))
C- .49662855645010D0*B
Y-Y+.14163757357289D-2*(FCR(A+C)+FCR(A-C))
C- .49506390924586D0*B
YiY+.1712763020455ID-2* (FCR(A+C)+FCR(A-C))
C- .49320337136229D0*B
YinY+. 2008127 491 86 93D-2* (7CR (A4C)+FCR (AC) )
C- .4910480 54217 85D0*B
Y-Y+.23022921283515D-2*(FCR(A+C)+FCR(A-C))
C- .48859924573295D0*B
Y-Y+.25950809163381D-2* (7CR (A+C) +FCR(A-C))
C- .48585840 937356D0*B
Y-Y+.28863187714328D-2*(FCR(A+C)+FCR(A-C))
C- .48282718321598D0*B
Y-Y+.31758315808536D-2* (7CR (A+C)+FCR (A-C))
C- .47 950737 8926 84D0*B
Y-Y+.34634462834494D-2* (FCR (A+C)+FCR (A-C))
C-.47590098067063D0*B
Y=Y+.37489909628273D-2*(FCR(A+C)+FCR(A-C))
C- .47201014391511D0*B
Y=Y+.40322949452430D-2* (7CR (A+C) +FCR(A-C))
C- .46783719413895D0*B
Y-Y+.43131888993083D-2* (7CR (A+C) +FCR (A-C))
C-.46338462543947D0*B
YinY+ .45 91 5049358304D-2* (7CR (A+C) +FCR (A-C) )
C- .45865509904048D0'B
Y-Y+ .4 8670767 075034D-2' (7CR (A+C) +FCR (A-C) )
C- .45365144170087D0*B
Y-Y+.5139739507916ID-2*(FCR(A+C)+FCR(A-C))
C- .44837664402457D0*B
Y-Y+.54093303697515D-2* (FCR (A+C) +FCR (A-C))
C- .44283385867269D0*B
YYy+ .56756 8816 20 402D-2* (7CR (A+C) +FCR (A-C) )f
C- .43702639847901D0*B
Y-Y+.59386536863701D-2* (7CR (A+C) +FCR (A-C))
C- .43095773446 977D0*B
Y-Y+ .619806 977 197 54D-2' (7CR (A+C) +FCR (A-C) )
Cm .4246314937 8898D0*B
Y-Y+.6 4537 8136 96 336D-2* (CR (A+C) +FCR(AC) )
C- .41805145753045D0*B
Y-Y..67056356443081D-2*(FCR(A+C)+FCR(A-C))



C- .411221558477 82D0*B
Y-Y+.69534820664755D-2* (FCR(A+C) +FCR(A-C))

* C-.40414587 875395D0*B
Y-Y+.71971725020834D-2* (FCR(A+C)+PCR(A-C))
C- .39682864738108D0*B
YuY+.74365613010731D-2*(FCR(A+C)+FCR(AC)
C- .3892742377 5320D0*B
Y-Y+.76715O53844326D-2*(FCR(A+C)+PCR(A-C))
Cm .3 814871650220 4D0*B
YmY+ .7 9018643 296 996D-2* (FCR (A+C) +FCR (A-C) )
C- .37347208339853D0*B
Y-Y+.8l275O04548926D-2*(FCR(A+C)+FCR(A-C))
C- .3652337 8337 095D0*B
Y-Y+.83482789007996D-2*(FCR(A+C)+FCR(A-C))
Cm. 356777 1888417 9D0*B
YinY+.85640677115557D-2* (FCR(A+C)+PCR(A-C))
C-.3 48107 3541 847 5D0*B
Y-Y+.87747379135588D-2* (FCR(A+C)+FCR(A-C))
C- .33922946122385D0*B
Y-Y+.89801635925043D-2*(FCR(A4C)4FCR(A-C))
C- .33014881613632D0*B
Y=Y+.91802219686657D-2* (PCR(A4C)+PCR(A-C))
C- .32087084628115D0*B
Y-Y+.93747934702723D-2* (FCR(A+C)+FCR(A-C))
C- .311 401096 95529D0*B
Y-Y+.95637618049754t-2* (FCR(A+C)+FCR(A-C))

* C=.30174522807927D0*B
Y=Y+.97470140293533D-2* (FCR(A+C)+FCR(A-C))
Cm .29190901081438D0'B

* Y-Y+.99244406164154l-2* (FCR (A+C)+FCR (A-C))
* C-.28189832411330D0*B

Y=Y+.10095935521065t-1*(FCR(A+C)+FCR(A-C))
C- .27171915120640D0*B
Y-Y+.1026139624348OD-1*(FCR(A4C)+FCR(A-C))
C- .26137757602558D0*B
Y-Y+.10420723890375D-1* (FCR(A+C)+FCR(A-C))
C- .25087 977 956 807D0*B
Y-Y+.10573823234110D-1*(FCR(A+C)+FCR(A-C))
C- .24023203620208D0*B
Y-Y4.10720602769604D-1' (FCR(A+C)+FCR(A-C))
C- .22944070991677D0*B
Y-Y+ .10860 97 476 90 26D-1* (FCR (A+C) +FCR (A-C) )
Cm .21851225051855D0*B
YmY+.10994855334230D-1* (FCR(A+C) +FCR (A-C))
C- .20745318977613D0*B
YmYs.11122164446900D-1* (FCR(A+C) +FCR (A-C))
C- .19627013751663D0*B
Y=Y+.11242826016372D-1*(FCR(A+C)+FCR(A-C))
C- .18496 977767 492D0*B
Y=Y+.11356767925118D-1*(FCR(A+C)+FCR(A-C))
C-.17355886429881D0*B
YiY+.11463922071843D-1*(FCR(A+C)+FCR(A-C))

* C-.16204421751220D0'B
Y=Y+.11564224412193D-1*(FCR(A+C)+FCR(A-C))
C-.15043271943883D0*B



Y-Y+.11657614997O31D-1* (FCR(A+C) +FCR (A-C))
C- .13873131008895D0'B
Y-Y+.11744O38008269D-1* (PCR CA+C) 4.CR (A-C))
C- .126 946 9832113 4D0*B
Y-Y+.11823441792224D-1* (PCR (AC) 4.CR (AC))
C- .1150867 8211332D0*B
Y-Y+.1189577889O501D-1* (FCR (A+C) +FCR (A-C))
C- .1O3157795451O3D0*B
YiY+.11961OO606S352D-1* (FCR(A+C) 4.CR (AC))
C- .91167152992668D-1*8
YmY+.12O19O84340512D-1* (PCR(A+C) 4.CR (A-C))
Cm .79122021357112D-1*B
Y-Y.1206997 8994509D-1* (FCR (A+C) +FCR (A-C))
C- .67O29599730594D-1*B
Y-Y4.1213659611407D1* (FCR (A4C) +FCR (A-C))
C- .54897115563822D-1*B
YiY+.12150100083986D-1* (FCR (A4C) 4.CR (A-C))
C- .42731820252257D.1*B
Y-Y4..12179278632345D-1* (FCR(A.C) 4FCR(A-C))
C- .30540984802069D-1*B
Y-Y4.12201177816925D-1*(FCR(A+C)+FCR(A-C))
C- .18331895484366D-1*B
Y-Y4..12215784548925D-1* (ICR (A+C)+FCR (A-C))
C- .6111S494803079D-2*B
Y-B*(Y4..12223090098131D-1*(1CR(A.C)4.ECR(A-C)))
RETURN
END



C PATINTERP2; USE ROOTM TAYLORWFUN USE PLOTRECT
*C SINC INTERPOLATION OF TAYLOR ONE-PARAMETER LINE SOURCE PATTERN
C WITH EXPANDED SAMPLING, ALFA >= 1
C J. WILLIS, P-753, JULY 1983
* DIMENSION A(100),E(600)

REAL LW
COMMON PI,SLR
PI=3.1415926536
PR=1 80/PI
WRITE (12,900)

900 FORMAT (1X,-PROGRAM PATINTERP2; SINC INTERPOLATION OF PATTERN*,/)
100 ACCEPT "L/WV,SLR.NPTS,ALFA N,LWV,SLRD,NP,ALFA

IF (LWV.EQ.0.) GO TO 990
IF (SLRD.LT.13.26144) STOP "SLR TOO SMALL"
WRITE (12,920) LWV,NP,ALFA

920 FORMAT (1X,*L/WV=w,F8.2,w N POINTS=",I4,u ALFA-=,F6.2,/)
C USE WEGSTEIN ROOTER TO CALC B VALUE

SLR=10. ** (.05*SLRD)
BS-.4603+.0479* (SLRD-13.26)
CALL ROOTW(B,F0,BS,1E-6,200,IFL)
IF (IFL.EQ.0) GO TO 105
TYPE "ERROR FLAG N,IFL

105 TYPE BS,FO," B=",B
WRITE (12,925) SLRD,B

925 FORMAT (1X,*SLR=",F5.2,* DB, B=',P9.6,/)
C NMAX IS MAXIMUM INDEX IN SUMMATION

NMAX=2*INT(.5*(2*ALFA*LWV+1) )-.1
* C NSAMP IS NUMBER OF SAMPLES EACH SIDE

* NSAMP-NMAX+l
* TYPE *NMAX=,NMAX, NSAMPLES=',NSAMP
C CALC PATTERN POINTS

B2-B*B
EO-SINH(PI*B) /(PI*B)
IF (B.LT..001) EO=1
TYPE wE NORM-*,EO
DO 110 I-1,NSAMP
A3-.5*I/ALFA
A3 2-A3*A3
IF (A32oGE.B2) GO TO 115
ARG-PI*SQRT (B2-A32)
IF (ARG.LT..O0001) GO TO 116
A(I) =SINH(ARG)/ARG
GO TO 110

115 ARG=PI*SQRT(A32-B2)
IF (ARG.LT..001) GO TO 118
A(I) =SIN(ARG) /ARG
GO TO 110

116 A(I)-1
GO TO 110

118 A(I-1
*. 110 CONTINUE
* .'A~ll

TYPE *A(I)="r(A(L) ,L-1,NSAMP)
C CALC PATTERN AT NP ANGLES



DO 120 I111W
TH-90.* (2*I-NP-1.) 1(NP-i.)
THR-TH/PR
U-LW*S IN (THR)
SUM-0
DO 130 J=1.NSAMP
Al-PI' (2*U*ALFA-J)
IF (ABS(Al).LT..001) GO TO 125
SNCl-SIN (Al) /A1
GO TO 126

125 SNC1-1
126 A2=PI' (2*U*ALFA+J)

IF (ABS(A2).LT..001) GO TO 127
SNC2-SIN(A2) /A2
GO TO 130

127 SNC2-1
130 STJK-SUM+A(J) *(SNC1+SNC2)

SNC-SIN (2*PI*U*ALFA) /(2*PI*U*ALFA)
IF (ABS(U).LT..001) SNC-1
SUN-SUM/E0 +A0 '5NC
SUNDBa'20*ALOG1O (ABS(SUM) +1.E-6)
TYPE U,SUMDB

120 E(I)=SUKDB
C SCALE PATTERN TO ZERO DB

ENE (1)
DO 135 1=2,NP

135 IF (E(I).GT.EN) EN-ECI)
DO 140 I=1,NP

140 E (I)-E (V)-EN
C WRITE PLOT FILE

OPEN 1."PLOTFILE",ERR-980
WRITE (1,950) (E(L),L-1,NP)
CLOSE 1p

950 FORMAT (E12.6)
WRITE (12,910)

910 FORMAT (IX,/,/,/)
GO TO 100

980 STOP "FILE OPEN ERROR"
990 WRITE (12,995)
995 FORMAT (1X,-<PF>-)

END



C ROMBTEST; USE ROMBER, TAYBCALC, ROOTW,TAYWFUN,BESI, ROMBTSTFCT
C COMPARE ROMBERG, 32 POINT GAUSS, AND ARRAY CALC

* C USE CLOSED FORK PATTERN AS REFERENCE
C USE TAYLOR ONE-PARAMETER DISRIBUTION
C LARGE U RANGE GIVES TIME AND ACCURACY CHECK
C SEE ALSO GAUSSTEST AND ARRAYTEST
C PREPARED BY R. C. HANSEN, OCT. 1983

DIMENSION E(1001),ITIME(3)
COMMON /TAY/ PI,SLR
COMMON /R/ PB,PU
PI-3.1415926536

100 ACCEPT OSLR,MUMAX,NPOINTS , SLRD,MUMAX,NPT
CALL TAYB(SLRD,B)
PB-PI*B
EO-SINH (PB)/PB
IF (PB.LT..001) E0=1
CALL TIME (ITIKE, IER)
TYPE (ITIME(L),L=1,3)
DO 120 Ii-,NPT
PUPI* (I-i) *UMAX/(NPT-1.)
CALL ROMBER(0.,1.,M,F)
E(I)-20*ALOG10 (ABS(F)/E0+1E-6)

120 TYPE I, E(I)
CALL TIME(ITIME,IER)
TYPE (ITIME(L),L-l,3)

. C SCALE BY LARGEST VALUE
* EN-E(1)

DO 130 I-2,NPT
130 IF(E(I).GT.EN)EN=E(I)

DO 140 I-1,NPT
140 E(I)-E(I)-EN

OPEN 1,"PLOTFILE*, ERR-980
WRITE (1,950) (E(L),L-1,NPT)
CLOSE 1

950 FORMAT (E12.6)
GO TO 100

980 STOP "FILE OPEN ERROR"
END

C ROMBTSTFCT; USE FOR ROMBTEST
FUNCTION FCT (X)
COMMON /R/ PB,PU
CALL BESI(PB*SQRT(1-X*X) ,0,BI,IF)
FCT'BI*COS (PU*X)
RETURN
END
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